Almost Complex Structures of Tangent Bundles and Finsler Metrics

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Hermitian structures on tangent bundles

In this article, we consider the almost Hermitian structure on TM induced by a pair of a metric and an affine connection on M . We find the conditions under which TM admits almost Kähler structures, Kähler structures and Einstein metrics, respectively. Moreover, we give two examples of Kähler-Einstein structures on TM . 2000 Mathematics Subject Classification: 53C55, 53C15, 53C25.

متن کامل

New structures on the tangent bundles and tangent sphere bundles

In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M). W...

متن کامل

Projective complex Finsler metrics

In this paper we obtain the conditions in which two complex Finsler metrics are projective, i.e. have the same geodesics as point sets. Two important classes of such metrics are submitted to our attention: conformal projective and weakly projective complex Finsler spaces. For each of them we study the transformations of the canonical connection. We pay attention for local projectivity with a pu...

متن کامل

Para-CR structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

We determine a 2-codimensional para-CR structure on the slit tangent bundle T0M of a Finsler manifold (M,F ) by imposing a condition regarding the almost paracomplex structure P associated to F when restricted to the structural distribution of a framed para-f -structure. This condition is satisfied when (M,F ) is of scalar flag curvature (particularly constant) or if the Riemannian manifold (M,...

متن کامل

CR-structures of codimension 2 on tangent bundles in Riemann-Finsler geometry

We determine a 2-codimensional CR-structure on the slit tangent bundle T0M of a Finsler manifold (M, F) by imposing a condition on the almost complex structure associated to F when restricted to the structural distribution of a framed f -structure. This condition is satisfied when (M, F) is of scalar flag curvature (particularly flat). In the Riemannian case (M, g) this last condition means tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1967

ISSN: 2156-2261

DOI: 10.1215/kjm/1250524340